
Spontaneous pair production in a magnetic monopole field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 5883

(http://iopscience.iop.org/0305-4470/28/20/017)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A: Math Gen. 28 (1995) 5883-5888. Printed in lhe UK 
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Abstract. Electrically charged scalar paiicle-antiparticle pair creation in the field of a magnetic 
monopole is shldied by path inlegrds. It is found that a magnetic charge g crates pairs with 
charge e, with angular momentum 1 c eg - 4 wilh the asimulhal component m = 0. 

1. Introduction 

The Coulomb field of a charge exceeding the value 137/2 spontaneously produces pairs 
of particles and antiparticles [I]. A mathematical explanation is as follows. The state 
functions describing the charge particles moving in the Coulomb field are given in terms of 
the Whittaker functions MK,,(p). Here the index K is always positive and the argument 
p is proportional to the radial coordinate r .  The second index which is important for OUT 

discussion is given by p = (1 + ;)2 - e2Qz where 1 is the angular momentum and Q is 
the charge of the source. For the supercritical sources, p becomes imaginary and we cannot 
distinguish MK., and its complex conjugate Mg,& = MK,-@ on the basis of finiteness at the 
origin. Thus for small values of the angular momentum we always have the mixture of two 
solutions which are complex conjugates of each other. The magnitude of this mixture can 
be found by imposing the condition that the solution should be finite for r going to infinity. 
The unique solution satisfying this condition can be given in terms of the other Whittaker 
function, W K , ~ .  When we express WK,, in terms of MK,@ and M;,&, we find the relative 
coefficient between these two functions which gives the pair-production amplitude. 

In this work we investigate the possibility of electrically-charged pair production in the 
field of a magnetic monopole. The situation is similar to the Coulomb case: we observe 
that a magnetic monopole g always produces the charged pairs with angular momentum 
constrained to the values ( I  + 4)’ < ezg2.  We adopt the method of path integrations, which 
has proved to be very convenient in pair production studies in cosmological backgrounds 
as well as in general electromagnetic potentials [2-4]. 

r 

2. The propagator 

The propagator for a charged scalar particle of mass p coupled to the external 
electromagnetic field A, is given by [ I ]  (with h = 1 )  
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which can also be expressed in the phase space form as [4] 

where the overdots stand for derivatives with respect to the ‘parameter time’ w .  The above 
path integral is understood as the usual graded formulation [3] 

2 f i p j  . (z, - =,-I) f i6poj - icp: + ieAj(n, - xj-l)] 

with 

x, = xg  X b  w = (n + I ) € ,  
For the magnetic monopole g, located at the origin, A, can be expressed in terms of 

spherical coordinates, as [ R  = c = 11 
g( l  - cos@) 

A, = Q rsin0 
Inserting this potential into (2) and adopting the spherical coordinates we have 

(3) 

The terms 1/4rZ and 1/4r2sinZ0 are the usual ordering terms IS]. The form of the 
interaction term suggests a translation of p, by pIP -+ p ,  - eg(1 - cos@); which leads 
to 

(5) 

There are several recipes in the literature on the derivation of the ordering terms resulting 
from the point canonical transformations in path integrals. Since we are not studying path 
integral problems in the present paper, we will not discuss these recipes here. We are 
merely interested in deriving the correct Green’s function for our problem. By writing the 
covariant Schrijdinger equation in (xu, w), (K = 0.1.2.3) ‘spacetime’ and performing the 
transformations to the polar coordinates we can actually check that the ordering terms in 
(5) are correct. 

The trivial path integrals over DtDpo and DqDp, fix the values pa = E and 
p, = m = 0, 1, 2, . . ., Then the expression for the propagator reads 

- pi + Zeg(p, - eg) cos0 - 2eg(p, - eg) - 114 
r 2  sin’ 0 
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p i  - ezg2 - 1/4 
r2 x / DrDp,DBDps exp p,L f pee - p:  - 

The dynamics of the 0 coordinate is of the Poschl-Teller potential type and its exact solution 
is known [6]: 

Here, P&(cos0) are the well known SU(2) matrix elements which are related to the Jacobi 
functions. The indices are defined as 

a = m - e g  , 9 = e g .  (9) 

F is the radial path integral given by 

whose solution is 

where 

y = J(1f 1/2)2 - 9 g 2 .  (12) 

After introducing (11) and (8) into (6) and performing the integration over dW we obtain 

~ ( x , ,  xb)  = -e'E('h-'a) G E I m  (no 7 xb). (13) J t: 1.m 

Here, GEIm is the propagator for the mode E ,  I, m which (with r, t rb) is given by 

G E I ~ ( x . ,  xb) = - e ~ ( " - ~ " ) f ~ ~ ( c o s ~ , ) ~ ~ ~ ( c o s ~ b ) - ~ : z '  ( m r u )  
1 1 
4 &E 

x J~ (ma) (14) 

where N$2' and J y  are the Bessel functions. 

3. Wavefunctions 

Wavefunctions are the solutions of the Klein-Gordon equation 

[(ia,, - e A J 2  - & ( x )  = 0 (15) 

with A,, given by (3 ) .  In spherical coordinates the above equation is solved by 
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The radial wavefunction R is given either by 

which are regular at r + 00 or at r + 0, respectively. 

r + 00 and r + 0, respectively. From the requirements 
We normalize R,  and R ,  on the timelike surfaces defined by constant r in the Limit 

R > ( r P , R ; ( r )  Lm= 1 (19) 

R<(r)a,R:(r) I L O =  1 (20) 

and 

we obtain 

and 

where 

i. = iy = Je*gZ - (/ + 1/2)*, 

4. The amplitude 

The amplitude for detecting a particle and an antiparticle at the timelike surfaces r. and r b  
is given by [2] 

Here, do'' is the element of the spherical surface with radius r and p is the radial direction 
from the surface: 

do' =rZdrdOsinBdfp 

A. is the vacuum persistence amplitude. 

Integrations over d t  and d v  at points a and b give 
We insert (14) into (24) and use (17) and (18) for f(a) and f(b), respectively. 

(25) 

in, = -mb = m. (26) 

1, = l b  E? 1 ff" = orb 2 01 pa = pb p .  (27) 

m, = mb = 0. (28) 

E, = - E b  E E 

and 

Integrals over de, and deb, by the virtue of the orthonormality of P& functions 171 give 

Equation (26) and the condition on a's in equation (27) imply 
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Thus only the pairs with modes m = 0 are produced. 
Taking into account the above considerations, the amplitude becomes 

For surfaces r, z rb the radial wavefunctions R, and Rb are given by (17) and (18) 
respectively. 

We want to evaluate the amplitude of equation (30) in r, + 00, rb + 0 limit. Two 
cases are distinguished. 

(i) For the real values of y .  that is for I + A > eg, AE,, vanishes. 
(ii) For the imaginary values of y .  that is for I + f < eg the amplitude is non-zero 

The probabilities for one and n pair production in the mode E,  I ,  m are 

PI = IAE~,I' = S(eg - I - 1/2)IAoI26,,o(l -e@?) = IAo12w 

P, = IAo12w". (34) 

P, = O(eg - 1 - 1/2)6,,0w"(l - w).  (35) 

(33) 
and 

After calculating IAoI2 from the conservation of probability we have 

The average number of pairs is 

5. Conclusion 

We found that in the field of a magnetic monopole g, pairs of electric charges e are created 
with total angular momenta 

I < eg - 1 /2  m = 0. (37) 
The situation is very similar to the charged pair creation in the Coulomb field exceeding 

Q = 13712. 
For r --t 0, the radial wavefunction describing the motion of an electrically-charged 

particle in the field of magnetic monopole is R ,  N J,,(-) N r*YP. For 
y = 4- real and positive (or negative), the positive (or negative) sign for 
the index of the Bessel function is chosen to have finite solution at the origin. Thus for 
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real y we have a unique solution. However, for imaginary values of y we do not have any 
physical criteria to distinguish between J y  and J- ,  = J; .  Therefore, recalling the relation 
between the Hankel and Bessel functions [SI 

for imaginary y’s one can establish a correlation between the states describing the particles 
at r + 00 and r -0. 

Wavefunctions describing the particles at r * 00 and r 2: 0 given by 

are related, for m = 0, as 
1 

sin R y f,&,(x) 2: --[e-*’f&(x) - (f&,(x))’l. (41) 

This means that for certain values of quantum numbers (i.e. for (l t 4)’ c e2g2 and 
m = 0) the particle states at r + CO are equal to the linear combination of the particle 
and antiparticle states of r 2: 0. The asymptotic vacuum is equivalent to the vacuum at 
the origin only, with the probability (e-zv)2 or the relative probability for the pair creation 
given by (33) 

w =  I -e-%Y. 
The magnitude of the elementary magnetic charge is eg = 4 191 or eg = 1 [lo]. Thus, 

unlike the case of the Coulomb field for which a superheavy nucleus is required, to have 
charged pair production large quantities of magnetic charges are not needed. If magnetic 
monopoles exist in nature, an amount equal to twice the elementary value is enough to 
create electrically-charged particles. 
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